Glossary of Data Science and Data Analytics

Transfer Learning (Transfer Öğrenme) Nedir?

Transfer Learning: Makine Öğreniminde Bilginin Yeniden Kullanımı

Transfer Learning (Transfer Öğrenme), yapay zeka ve makine öğrenimi modellerinin eğitim süreçlerini hızlandırmak ve performanslarını artırmak için kullanılan güçlü bir tekniktir. Transfer learning, bir modelin önceki bir görevde öğrendiği bilgiyi başka bir görevde yeniden kullanmasını sağlar. Bu yaklaşım, özellikle sınırlı veri setlerine sahip olduğumuz durumlarda büyük avantajlar sunar. Bu yazıda, transfer learning’in ne olduğu, nasıl çalıştığı ve farklı kullanım alanlarına nasıl uygulanabileceğini inceleyeceğiz.

Transfer Learning, bir makine öğrenimi modelinin, önceden eğitim aldığı bir görevde kazandığı deneyimi, benzer bir başka görevde kullanmasıdır. Geleneksel yöntemlerle bir makine öğrenmesi modeli, her görev için sıfırdan eğitilmek zorundayken, transfer learning bu gerekliliği ortadan kaldırır. Böylece, modelin belirli bir görevde zaten öğrendiği bilgileri kullanarak, yeni görevde daha az veri ile daha hızlı ve etkili bir şekilde öğrenmesi sağlanır.

Özellikle büyük dil modelleri (LLMs) ve GPT gibi yapıların eğitimi için transfer learning büyük bir öneme sahiptir. Bu modeller, devasa veri kümeleri üzerinde eğitildikten sonra, spesifik görevlere uyarlanarak yeniden kullanılabilir.

Transfer Learning Nasıl Çalışır?

Transfer learning, genellikle iki temel aşamadan oluşur:

  1. Önceden Eğitilmiş Modelin Kullanılması: Transfer learning’in ilk adımı, geniş bir veri seti üzerinde önceden eğitilmiş bir modelin kullanılmasıdır. Bu model, genellikle genel özellikleri öğrenmek için eğitilir. Örneğin, bir sinir ağı görsel veriler üzerinde eğitildiğinde, kenarları, şekilleri ve genel yapıları tanımayı öğrenir.
  2. Yeni Göreve Uyum Sağlama: İkinci adımda, model yeni bir görev için özelleştirilir. Bu, modelin bazı katmanlarının donması ve sadece son katmanlarının yeniden eğitilmesiyle gerçekleştirilir. Böylece model, önceki görevde öğrendiği bilgileri korurken, yeni görevdeki veriye uyum sağlar.

Örneğin, bir model computer vision (bilgisayarla görme) görevlerinde nesne tanıma için eğitildiyse, daha sonra yeni bir veri setiyle hayvan türlerini tanıma görevi için uyarlanabilir.

Transfer Learning Türleri

Transfer learning farklı yaklaşımlarla uygulanabilir. İşte en yaygın transfer learning türleri:

1. Fine-Tuning

Fine-tuning (İnce Ayar), transfer learning’in en yaygın kullanılan yöntemlerinden biridir. Bu yöntemde, önceden eğitilmiş bir modelin son katmanları, yeni görev için yeniden eğitilir. Önceki görevde öğrenilen temel özellikler korunurken, yeni görevdeki spesifik bilgiler de modele eklenir. Özellikle neural networks (sinir ağları) ile çalışan modellerde fine-tuning yöntemi oldukça etkilidir.

2. Feature Extraction

Bu yöntemde, önceden eğitilmiş modelin sadece son katmanları kullanılır ve yeni bir görev için bu katmanlar özelleştirilir. Modelin geri kalan kısmı, özellik çıkarma aşamasında sabit tutulur. Özellik çıkarma yöntemi, genellikle daha küçük veri setleri üzerinde çalışan görevlerde kullanılır.

3. Domain Adaptation

Domain adaptation (Alan Uyarlaması), modelin bir görevden bir diğerine aktarılırken, iki görev arasındaki veri farklılıklarına uyum sağlamasını amaçlar. Örneğin, bir modelin görsel veriler üzerinde eğitildiği bir senaryoda, model daha sonra farklı bir veri formatında (örneğin, tıbbi görüntüler) çalışacak şekilde uyarlanabilir.

Transfer Learning’in Faydaları

Transfer learning, geleneksel model eğitim yaklaşımlarına kıyasla çeşitli avantajlar sunar. İşte bu avantajlardan bazıları:

1. Daha Az Veri ile Yüksek Performans

Transfer learning, özellikle sınırlı veri setlerine sahip olduğunuz durumlarda son derece etkili olabilir. Yeni bir görevi sıfırdan eğitmek yerine, önceden eğitilmiş bir modelin kullanılması, daha az veriyle yüksek performans elde etmenizi sağlar. Bu, birçok makine öğrenmesi projesi için önemli bir avantajdır.

2. Daha Hızlı Eğitim Süreleri

Transfer learning, eğitim sürecini büyük ölçüde hızlandırır. Bir modeli sıfırdan eğitmek yerine, önceden eğitilmiş bir modeli kullanarak sadece birkaç katmanı yeniden eğitmek yeterli olabilir. Bu, zaman ve işlem maliyetlerinden tasarruf sağlar.

3. Genel Bilgi ile Spesifik Görevlere Uyum

Önceden eğitilmiş modeller, geniş bir veri kümesinden elde edilen genel bilgileri öğrenebilir. Bu genel bilgiler, modelin yeni görevler için özelleştirilmesini kolaylaştırır. Örneğin, bir dil modeli büyük miktarda metin verisi üzerinde eğitildiyse, bu model daha sonra belirli bir dil işleme görevine (örneğin, metin sınıflandırma) kolayca uyarlanabilir.

Transfer Learning ve Popüler Uygulamaları

Transfer learning, yapay zeka ve makine öğrenimi dünyasında birçok uygulama alanına sahiptir. İşte transfer learning’in bazı yaygın kullanım alanları:

1. Doğal Dil İşleme (NLP)

Transfer learning, doğal dil işleme (NLP) alanında sıklıkla kullanılır. Özellikle GPT, BERT gibi modeller, geniş bir metin verisi üzerinde eğitildikten sonra çeşitli dil işleme görevlerine uyarlanabilir. Bu görevler arasında dil modeli oluşturma, metin sınıflandırma ve soru yanıtlama gibi işlemler yer alır.

2. Görsel Tanıma

Transfer learning, bilgisayarla görme (computer vision) alanında nesne tanıma, görüntü sınıflandırma ve yüz tanıma gibi görevlerde kullanılır. Örneğin, bir model geniş bir görüntü veri seti üzerinde eğitildikten sonra, belirli bir alandaki (örneğin, tıbbi görüntüleme) görevlere kolayca uyarlanabilir.

3. Oyun ve Robotik

Transfer learning, reinforcement learning (pekiştirmeli öğrenme) alanında da kullanılır. Bir robot, bir görevde başarılı olmayı öğrendikten sonra, öğrendiği stratejiyi benzer görevlerde kullanarak daha hızlı adapte olabilir.

Transfer Learning’in Zorlukları

Her ne kadar transfer learning güçlü bir teknik olsa da, bazı zorlukları da beraberinde getirir:

Sonuç

Transfer learning, makine öğrenmesi ve yapay zeka projelerinde verimliliği artıran, eğitim sürelerini kısaltan ve veri gereksinimlerini azaltan son derece faydalı bir tekniktir. Komtaş Bilgi Yönetimi olarak, transfer learning gibi modern yapay zeka yaklaşımlarını projelerinizde kullanarak size en iyi çözümleri sunuyoruz. İhtiyaçlarınız doğrultusunda en iyi uygulamalarla sizi desteklemek için buradayız.

back to the Glossary

Discover Glossary of Data Science and Data Analytics

What is Operational Resilience?

Business Flexibility is the ability of a business to continue operating in the event of an outage.

READ MORE
NotebookLM Nedir?

NotebookLM, Google tarafından geliştirilen yapay zeka destekli bir not alma ve bilgi yönetim platformudur. Google’ın gelişmiş dil modelleri (Large Language Models – LLMs) ile entegre edilmiş bu araç, kullanıcılara notlarını daha etkili bir şekilde düzenleme, özetleme ve analiz etme imkanı sunar.

READ MORE
What is Data Mart?

Data Mart is a slice of the data warehouse logical model that serves a narrow group of users. Many data subsets only need a subset of data from the full tables in the data warehouse.

READ MORE
OUR TESTIMONIALS

Join Our Successful Partners!

We work with leading companies in the field of Turkey by developing more than 200 successful projects with more than 120 leading companies in the sector.
Take your place among our successful business partners.

CONTACT FORM

We can't wait to get to know you

Fill out the form so that our solution consultants can reach you as quickly as possible.

Grazie! Your submission has been received!
Oops! Something went wrong while submitting the form.
GET IN TOUCH
SUCCESS STORY

Enerjisa - Self Service Analytics Platform Success Story

The Self-Service Analytics platform was designed for all Enerjisa employees to benefit from Enerjisa's strong analytics capabilities.

WATCH NOW
CHECK IT OUT NOW
50+
Project Implemented
200
Participant for Data Marathon
350
Employee Benefit from Self Service Analytical Environment
Cookies are used on this website in order to improve the user experience and ensure the efficient operation of the website. “Accept” By clicking on the button, you agree to the use of these cookies. For detailed information on how we use, delete and block cookies, please Privacy Policy read the page.