Bir algoritma yinelemeleri veya düzenlilikleri büyük veri kümeleri içerisine veya farklı veri kümelerine yerleştirdiği zaman örüntü tanıma meydana gelir. Makine öğrenimi ve veri madenciliği ile yakından ilişkilidir ve hatta eş anlamlısı olduğu düşünülür. Bu görünürlük araştırmacıların içgörü keşfetmelerine veya aksi takdirde belirsiz olabilecek sonuçlara ulaşmalarına yardımcı olabilir.
Pre-training, bir modelin geniş veri setlerinde önceden eğitilmesi ve ardından spesifik bir görevi yerine getirmek üzere ince ayar yapılması (fine-tuning) anlamına gelir. Bu teknik, özellikle doğal dil işleme (NLP) ve görüntü işleme gibi alanlarda yaygın olarak kullanılmaktadır.
GPT-3, veri, dil ve yazı ile ilgili olasılıklar nedeniyle oldukça popülerken GPT-4 tüm bunların yanı sıra daha fazla yaratıcılık ve görüntü tanıma ile daha dikkat çekici güncellenmiş bir GPT sürümüdür.
Few-shot learning, makine öğrenimi modellerinin çok az sayıda örnekle eğitilerek etkili sonuçlar üretmesini sağlayan bir tekniktir. Geleneksel makine öğrenimi yöntemleri, başarıya ulaşmak için büyük miktarda veri gerektirirken, few-shot learning bu gereksinimi ortadan kaldırır ve az veriyle yüksek performans sağlar.
Sektöründe öncü 120'den fazla şirket ile 200'den fazla başarılı proje geliştirerek Türkiye'nin alanında lider şirketleri ile çalışıyoruz.
Siz de başarılı iş ortaklarımız arasındaki yerinizi alın.
Formu doldurarak çözüm danışmanlarımızın tarafınıza en hızlı şekilde ulaşmasını sağlayın.