Neural Networks (Sinir Ağları), yapay zeka ve makine öğrenmesinin temel yapı taşlarından biridir. İnsan beyninin işleyişinden ilham alınarak tasarlanan bu yapılar, karmaşık problemlerin çözümünde ve veri işleme süreçlerinde kullanılır. Özellikle günümüzün yapay zeka devriminde, sinir ağları, deep learning, generative AI ve diğer birçok modelin temelini oluşturur. Bu yazıda, neural networks nedir, nasıl çalışır ve hangi alanlarda kullanılır sorularına yanıt arayacağız.
Neural networks, insan beynindeki sinir hücrelerinden esinlenerek tasarlanmış bir yapıdır. İnsan beyninde milyarlarca nöron, birbirleriyle sinapslar aracılığıyla etkileşimde bulunur ve bilgi iletir. Benzer şekilde, bir yapay sinir ağı da bir dizi "nöron" (yapay nöron) veya "katman" aracılığıyla bilgiyi işler.
Bu ağlar, veri girdilerini alır, bu verileri işler ve sonunda bir çıktı üretir. Neural networks, öğrenme sürecinde ağırlıklar ve bağlanma kuvvetlerini optimize ederek girdilere dayalı sonuçlar üretir. Bu ağlar özellikle büyük veri setleri ile eğitildiğinde, karmaşık ilişkileri ve örüntüleri öğrenme yeteneğine sahiptir.
Sinir ağları, katmanlar halinde organize edilir. Bu katmanlar üç ana başlık altında incelenir:
Sinir ağları, backpropagation yöntemi ile öğrenir. Yani, modelin ürettiği hatalar geri besleme yoluyla ağırlıklara iletilir ve bu ağırlıklar güncellenir. Böylece model, zamanla daha doğru sonuçlar üretmeyi öğrenir.
Farklı problem türlerine göre neural networks farklı yapılar alabilir. İşte en yaygın neural networks türleri:
En temel sinir ağı yapısıdır. Veriler, giriş katmanından çıkış katmanına doğru ilerler ve geri dönmez. Bu tür ağlar, genellikle basit sınıflandırma ve regresyon problemlerinde kullanılır. Autoregressive models gibi ardışık veri gerektirmeyen yapılarda kullanılabilir.
CNN'ler özellikle görüntü işleme problemlerinde yaygın olarak kullanılır. Verilerin bölgesel özelliklerini çıkarmak için katmanlar arası "convolution" işlemi uygulanır. Generative Adversarial Networks (GANs) gibi görsel veri üreten yapılar, CNN yapılarından yararlanır.
RNN'ler, ardışık veri işleme ve zaman serileri tahmini gibi problemlerde kullanılır. Özellikle dil modellerinde, bir kelimenin sırasının önemli olduğu yerlerde kullanılır. RNN'ler geçmiş verileri hatırlayabilen ve bu verilere göre tahminler yapabilen bir yapıya sahiptir. GPT (Generative Pre-trained Transformer) gibi modeller, bu tür ağların geliştirilmiş versiyonlarına dayanır.
Transformer neural networks, özellikle dil işleme ve metin üretimi gibi alanlarda kullanılan en yeni yapılar arasındadır. Attention mechanism adı verilen bir yapıyı kullanarak veriler arasındaki ilişkileri öğrenir. Bu modeller, Few-shot learning ve Zero-shot learning gibi uygulamalarda üstün performans sergiler.
Neural networks, geniş bir uygulama yelpazesine sahiptir. İşte bazı önemli kullanım alanları:
Sinir ağları, görüntü tanıma sistemlerinde kullanılır. Örneğin, bir CNN, resimlerdeki nesneleri tanımak için eğitilebilir. Self-supervised learning ve unsupervised learning yöntemleriyle, sinir ağları büyük veri setlerinden anlamlı özellikler çıkarabilir.
Neural networks, dil modellerinde büyük bir devrim yaratmıştır. Large Language Models (LLMs), metin üretimi, dil çevirisi ve diyalog sistemlerinde sinir ağlarıyla çalışır. Özellikle prompt engineering ve tokenization gibi süreçler, bu ağların başarısında kritik rol oynar.
Sinir ağları, otonom araçlar ve robotik sistemlerde de yaygın olarak kullanılır. Reinforcement Learning from Human Feedback (RLHF) gibi yöntemlerle bu sistemler, çevrelerinden öğrenerek daha iyi kararlar alabilirler.
Sinir ağları, hastalıkların teşhisi ve tedavi süreçlerinde de önemli rol oynar. Örneğin, bir CNN modeli, MR veya röntgen görüntülerini analiz ederek doktorlara hastalık teşhisi konusunda yardımcı olabilir.
Sinir ağları, modern yapay zeka araştırmalarının ve uygulamalarının merkezinde yer alır. Gelişen algoritmalar ve daha güçlü hesaplama gücü sayesinde, sinir ağlarının potansiyeli her geçen gün artmaktadır. Yeni ve karmaşık problemler çözüldükçe, bu yapılar daha fazla alan ve sektörde kullanılacaktır.
Sinir ağlarının gücü, sadece büyük veri setleri ile eğitilebilmelerinde değil, aynı zamanda insan beyninin öğrenme sürecini taklit edebilme yeteneklerinde yatmaktadır. Bu nedenle, sinir ağları hem mevcut uygulamalarda hem de gelecekteki inovasyonlarda önemli bir yer tutmaktadır.
Neural networks, yapay zeka ve makine öğrenmesinin temelini oluşturan güçlü bir araçtır. Farklı türdeki neural networks, çeşitli problemlerin çözümünde kullanılabilir. Komtaş Bilgi Yönetimi olarak, neural networks teknolojisini projelerinizde en verimli şekilde kullanmanız için size uzman desteği sunuyoruz. Yapay zeka projelerinizde sinir ağları kullanarak nasıl başarı elde edebileceğinizi öğrenmek için bizimle iletişime geçebilirsiniz.
Google’ın sunduğu PaLM (Pathways Language Model), büyük ölçekli dil modellerinin sınırlarını zorlayan, ileri düzey yapay zeka yetenekleriyle donatılmış bir modeldir. PaLM, doğal dil işleme (NLP) ve çoklu görevlerdeki üstün performansıyla yapay zeka dünyasında ilgi çekmektedir
Grok, Elon Musk'ın liderliğinde kurulan yapay zeka girişimi xAI’nin bir ürünüdür ve özellikle karmaşık veri analizlerini daha anlaşılır hale getirmeyi hedefler. "Explainable AI" (Açıklanabilir Yapay Zeka) kavramını benimseyen Grok, şirketlerin karar alma süreçlerinde daha şeffaf ve izlenebilir bir yapay zeka sistemi sunmayı amaçlar.
TechTarget defines machine learning as: “... it is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.
We work with leading companies in the field of Turkey by developing more than 200 successful projects with more than 120 leading companies in the sector.
Take your place among our successful business partners.
Fill out the form so that our solution consultants can reach you as quickly as possible.