Glossary of Data Science and Data Analytics

Regresyon Nedir?

Regresyon, istatistiksel modelleme ve veri analizi süreçlerinde, bağımlı bir değişken (sonuç) ile bir veya daha fazla bağımsız değişken (girdi) arasındaki ilişkiyi inceleyen bir tekniktir. Temel amacı, mevcut verilerden yola çıkarak bağımlı değişkenin gelecekteki değerlerini tahmin etmek veya açıklamaktır. Regresyon analizi, bilimsel araştırmalardan iş dünyasına kadar birçok alanda kritik bir araçtır.

Regresyon Türleri

  1. Doğrusal Regresyon:
    Bağımlı ve bağımsız değişkenler arasındaki ilişki, bir düz çizgiyle temsil edilir. En yaygın kullanılan türlerden biridir.
    • Örnek: Bir evin fiyatını, bulunduğu mahalle ve metrekare büyüklüğüne göre tahmin etme.
  2. Lojistik Regresyon:
    Bağımlı değişkenin kategorik olduğu durumlarda kullanılır. İkili sonuçlar için uygundur (örneğin, “Evet” veya “Hayır”).
    • Örnek: Bir müşterinin abonelik satın alma olasılığını tahmin etme.
  3. Çoklu Doğrusal Regresyon:
    Birden fazla bağımsız değişkenin etkisinin analiz edildiği bir modeldir.
    • Örnek: Bir ürünün satışlarını, fiyat, reklam harcamaları ve mevsimsel etkilerle ilişkilendirme.
  4. Polinomal Regresyon:
    Doğrusal olmayan ilişkileri modellemek için kullanılır. Bağımsız değişkenler üzerindeki etkiler daha karmaşıktır.
    • Örnek: Verimlilik ve iş gücü arasındaki karmaşık ilişkiyi modelleme.
  5. Ridge ve Lasso Regresyonu:
    Çoklu regresyon modellerinde, fazla uyumu (overfitting) önlemek için kullanılan düzenleme teknikleridir.
  6. Zaman Serisi Regresyonu:
    Zaman bağımlı verilerde kullanılan bir yöntemdir. Özellikle finans ve ekonomi gibi alanlarda popülerdir.

Regresyonun Kullanım Alanları

  1. İş Dünyası:
    • Satış tahminleri ve pazar analizi.
    • Tedarik zinciri optimizasyonu.
    • Müşteri davranışlarını analiz etme.
  2. Sağlık:
    • Hastalık risk faktörlerini belirleme.
    • Klinik deneylerde tedavi etkinliğini değerlendirme.
  3. Ekonomi ve Finans:
    • Hisse senedi fiyatlarını tahmin etme.
    • Makroekonomik veriler arasındaki ilişkileri analiz etme.
  4. Makine Öğrenimi:
    • Regresyon, tahmin modellerinin temelini oluşturur. Örneğin, ev fiyatı tahmini veya enerji tüketimi modelleme.
  5. Sosyal Bilimler:
    • Demografik faktörler ile yaşam kalitesi arasındaki ilişkiyi inceleme.
    • Eğitim sonuçlarını etkileyen faktörleri analiz etme.

Regresyon Nasıl Çalışır?

Regresyon analizi, belirli bir matematiksel formül üzerinden bağımlı değişkeni açıklamaya çalışır:

Y=a+bX+ε

Burada:

  1. Model Kurma: İlişkilerin matematiksel bir denklemle ifade edilmesi.
  2. Parametre Tahmini: Eğim ve sabit katsayılarının belirlenmesi.
  3. Model Değerlendirme: Modelin doğruluğunu test etmek için hata terimi analizi yapılır.

Regresyon Analizinde Karşılaşılan Sorunlar

  1. Çoklu Doğrusallık:
    Birden fazla bağımsız değişkenin birbirine yüksek derecede bağlı olması durumudur. Çözüm olarak, Ridge veya Lasso regresyonu uygulanabilir.
  2. Eksik Veriler:
    Veri setindeki eksiklikler, modelin performansını olumsuz etkileyebilir. Eksik verilerin yönetilmesi için uygun teknikler kullanılmalıdır.
  3. Outlier (Aykırı Değerler):
    Aşırı uç değerler, modelin sonuçlarını çarpıtabilir. Aykırı değerlerin temizlenmesi veya analiz sürecine dahil edilmesi gerekir.
  4. Overfitting (Aşırı Uyum):
    Model, eğitim verilerine çok fazla uyum sağladığında, yeni veriler üzerinde düşük performans gösterebilir. Düzenleme yöntemleri veya çapraz doğrulama (cross-validation) bu sorunu çözebilir.

Regresyonun Avantajları ve Sınırlamaları

Avantajları:

Sınırlamaları:

Regresyon analizi, bilimsel araştırmalardan ticari uygulamalara kadar geniş bir kullanım alanına sahiptir. Hem basit hem de karmaşık veri setlerinde uygulanabilir. Komtaş'ın veri analizi ve modelleme çözümleriyle regresyon yöntemlerini iş süreçlerinize entegre edebilirsiniz. Daha fazla bilgi almak için bize ulaşabilirsiniz!

back to the Glossary

Discover Glossary of Data Science and Data Analytics

Veri Demokrasisi (Data Democratization) Nedir?

Veri demokrasisi, bir organizasyon içerisindeki tüm çalışanların teknik bilgiye ihtiyaç duymadan verilere kolayca erişebilmesini ve bu verileri kullanabilmesini sağlama sürecidir. Bu yaklaşım, veri silolarını ortadan kaldırır, iş süreçlerini hızlandırır ve karar alma süreçlerini iyileştirir.

READ MORE
What is Data Warehouse Modernization?

Explore the evolving world of Data Warehouse Modernization and its importance in leveraging big data. Learn how data warehouses work, their types, requirements in various industries, and application areas.

READ MORE
What is Apache Hive?

Apache Hive is an open source data warehouse infrastructure that provides tools for data summarization, querying, and analysis.

READ MORE
OUR TESTIMONIALS

Join Our Successful Partners!

We work with leading companies in the field of Turkey by developing more than 200 successful projects with more than 120 leading companies in the sector.
Take your place among our successful business partners.

CONTACT FORM

We can't wait to get to know you

Fill out the form so that our solution consultants can reach you as quickly as possible.

Grazie! Your submission has been received!
Oops! Something went wrong while submitting the form.
GET IN TOUCH
SUCCESS STORY

Akbank Data Governance Program

As part of the data governance program, we successfully completed a project with Akbank to accelerate data-driven decision-making.

WATCH NOW
CHECK IT OUT NOW
Cookies are used on this website in order to improve the user experience and ensure the efficient operation of the website. “Accept” By clicking on the button, you agree to the use of these cookies. For detailed information on how we use, delete and block cookies, please Privacy Policy read the page.